
Math 121 Midterm

You are allowed 50 minutes for this midterm. Write answers clearly. All questions have equal
weight. Remember that when writing code, the most important thing is correctness, but some
attention will be paid to style. Simple, elegant, efficient and easy-to-understand code is best.
There are four questions plus a bonus question to answer if you can.

Name _______________________

Question 1

Below, write what will appear in the terminal when the following code is run.

def foo(f):

 def bar(g):

 return f(f(g))

 return bar

f = foo(lambda x: x + 2)

print(f(2))

g = foo(print)

print(g(3))

Question 2

Write below code to define the function every_other. This function takes as input a single
list. The function then returns a list of every other element of the input list, starting with the
second. You should return a new list. Do not modify the list that was given as input.

For example:
every_other([3, 7, 10, 8, 4]) returns [7, 8].
every_other([9]) returns [].
every_other([8, 7, 3, 5, 1, 4, 2, 6]) returns [7, 5, 4, 6].

Question 3

Write below code to define the function count. This function takes as input a list and a test
function. It then returns the number of items of the list for which the test returns true. This
function must be recursive.

For example:
If we define atLeastTen as follows…
def atLeastTen(n):

 return n >= 10

…then

count([3, 17, 10, 8, 4], atLeastTen) returns 2.
count([]) returns 0.

Question 4

Below is the code for the Student class we (roughly) defined in class. Write the code for a

new class, HungryStudent, to represent a student that also eats food. This class should
inherit from Student, but should differ in two ways. First, hungry students have some amount
of money, which always starts at $100. Second, there is now an eat method. When eat is
called, the student spends money on food, decreasing their money by $5 but increasing their
energy by 3. If the student does not have the necessary $5, nothing (including the behavior
described above) should happen.

class Student:

 def __init__(self, name):

 self.name = name

 self.energy = 10

 self.assignments = []

 self.knowledge = 0

 def getAssignment(self, size):

 self.assignments.append(size)

 def doAssignment(self):

 if self.assignments[0] <= energy:

 self.energy -= self.assignments[0]

 self.knowledge += self.assignments[0]

 self.assignments = self.assignments[1:]

Bonus

Write below code to define the function maxPrimeFactor. This function takes as input
input a number and outputs the largest prime factor of that number.

For example:
1265 factors as 5 × 11 × 23, so maxPrimeFactor(1265) returns 23.

